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has been suggested. The advantages of applying this method in comparison with often used linear and
nonlinear isoconversional methods are put in evidence. The suggested method was applied to experimen-
tal non-isothermal data for degradation of polyvinyl chloride, decomposition of ammonium perchlorate
and crystallization of poly(ethylene terephthalate) melt. The so obtained values of the activation energy
were compared with those resulting from other methods of analysis.
soconversional methods
ctivation energy

. Introduction

Under non-isothermal conditions at a linear heating rate, the
inetics of heterogeneous reactions is usually described by the rate
quation:

d˛

dt
≡ ˇ

d˛

dT
= Af (˛) exp

(
− E

RT

)
(1)

here ˛ is the degree of conversion, t is the time, T is the tempera-
ure, ˇ is the linear heating rate, A is the pre-exponential factor, E is
he activation energy, f(˛) is the differential function of conversion
nd R is the gas constant.

Starting with this equation, various procedures for evalu-
ting the kinetic triplet (A, E, f(˛)) were developed. As has
esults from some critical analyses [1–14], the correct determi-
ation of non-isothermal kinetic parameters involves the use
f experimental data recorded at several heating rates. These
ata have allowed applying the isoconversional (model-free)
ethods in assessing the activation energy on the conversion

egree that can be correlated with the investigated process
echanism. Isoconversional procedures are classified as either

inear or nonlinear. In the linear procedures, from which we

ention Friedman (FR) [15], Flynn–Wall–Ozawa (FWO) [16,17],

issinger–Akahira–Sunose (KAS) [18], Li–Tang (LT) [19,20], the
ctivation energy is evaluated from the slope of a straight line, while
n integral [21–25] and differential [26] nonlinear procedures the
ctivation energy is evaluated from a specific minimum condition.

E-mail address: bp@icpe-ca.ro.

040-6031/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
oi:10.1016/j.tca.2010.07.018
© 2010 Elsevier B.V. All rights reserved.

Both linear and nonlinear procedures may be either differential or
integral according to the equation that underlies them, namely Eq.
(1) or its integral form:∫ ˛

0

d˛

f (˛)
≡ g (˛) = A

ˇ

∫ T˛

0

[
exp

(
− E

RT

)]
dT ≡ A

ˇ
I(E˛, T˛) (2)

where g(˛) is the integral conversion function and I(E˛, T˛) is the
temperature integral that cannot be exactly resolved.

The linear methods use some simple approximations of the tem-
perature integral, like those suggested by Doyle [27] and Coats and
Redfern [28], which exhibit a relative low accuracy. On the other
hand, the integral nonlinear procedures allow using more pre-
cise approximations of this integral, like the rational expressions
given by Senum and Yang [29]. Therefore, the application of inte-
gral nonlinear procedures leads to accuracy values of E. However,
in comparison with linear methods, the use of nonlinear methods
need a longer computational time. An attempt to outrun this disad-
vantage was performed by Gao et al. [30] who suggested an iterative
procedure in which is assumed the reaction order model.

The derivation of equations that underlie the integral linear
or nonlinear procedures assumes the independence of the activa-
tion parameters (E and A) on the conversion degree. On the other
hand, it was pointed out [3,31–34] that when E depends on ˛,
some important differences exist between E values determined by
differential and integral isoconversional methods. In such a case,

the differential isoconversional methods, like FR [15] and nonlin-
ear differential [26] methods, as well as the modified (advanced)
nonlinear method suggested by Vyazovkin [24] are recommended
as the results obtained by integral isoconversional methods are
dependent on the history of the system in the range 0–˛ [4]. For

dx.doi.org/10.1016/j.tca.2010.07.018
http://www.sciencedirect.com/science/journal/00406031
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tion RI = C becomes:
P. Budrugeac / Thermoc

ome cases in which activation energy changes with conversion
egree, the dependence of E˛ on lower limit of integral was also
ut in evidence [35] by applying LT method.

Because differential methods employ instantaneous rate values,
t is sensitive to inherent noise and tends to be numerically unstable
36]. The corresponding errors could be reduced by smoothing of
he experimental data. In order to eliminate this systematic error,
yazovkin [24] suggested a modification of the integral nonlin-
ar method previously worked out by him [21], which consists in
etermining the integral I(E˛, T˛) over a small �˛ range (modified
onlinear method). Budrugeac [26] pointed out that for �˛ → 0,
he E˛ values obtained by this method are practically equal to those
btained by FR method. Recently Cai and Chen [37] suggested a iter-
tive linear integral isoconversional method for E˛ evaluation that
lso uses the integration over a small �˛ range and leads to correct
alues of the activation energy in much less time than Vyazovkin
ethod.
In this paper, a new iterative integral isoconversional method

ith integration over a given range of conversion will be suggested.
t will pointed out the following advantages of this method: the
pplicability for large and small �˛ ranges; the possibility of using
f precise approximations for temperature integral, even the val-
es of this integral obtained by numerical integration performed by
athematica software system; put in evidence the importance of

ower limits of integration for E˛ evaluation when E depends on ˛;
he method can be applied even when the initial temperature cor-
esponding to ˛ = 0 is randomly choice from the range 0 – minimum
nset temperature; the application of this method in certain favor-
ble cases could indicate the range of conversion degree in which
he kinetics of the complex investigated process is determined by
certain step characterized by activation parameters that do not
epend on ˛.

. Theoretical part

The integration of Eq. (1) for the limits ˛1(T1) and ˛2(T2), and
onstant heating/cooling rate leads to:

(˛2) − g(˛1) = A

ˇ

∫ T2

T1

[
exp

(
− E

RT

)]
dT (3)

n the integral linear isoconversional methods, as FWO [19,20] and
AS [21], as well as in nonlinear integral isoconversional method
uggested by Vyazovkin [21], it is considered the case in which
1 = 0. In such condition,

∫ T1
0

[exp(−E/RT)]dT ≈ 0 [38] and Eq. (3)
urn into Eq. (2).

The integral temperature from the right member of Eq. (3) can
e expressed as [25]:

(E, T1, T2) =
∫ T2

0

[
exp

(
− E

RT

)]
dT

−
∫ T1

0

[
exp

(
− E

RT

)]
dT ≡ E

R
[p(x2) − p(x1)] (4)

here x = E/RT .
From the numerous approximations suggested for p(x) in Sec-

ion 3, we will use the four order approximation given by Senum
nd Yang [29], which exhibits a very high accuracy (the relative
rror lower than 0.6% for x ≥ 1):

(x) = e−x

x

x3 + 18x2 + 86x + 96
x4 + 20x3 + 120x2 + 240x + 120

(5)
q. (3) can be written as:

(˛2) − g(˛1)= AE

Rˇ
(T2−T1)

[
exp

(
− E

RT2

)]
p(x2) − p(x1)

(T2 − T1)
[
exp

(
− E

RT2

)]
(6)
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from which it results:

ln
ˇ

T2 − T1
= ln

A

g(˛2) − g(˛1)
+ ln RI − E

RT2
(7)

where RI =
∫ T2

T1
[exp(−E/RT)]dT

(T2−T1)[exp(−E/RT2)] = E
R

p(x2)−p(x1)
(T2−T1)[exp(−E/RT2)] .Considering

that ˛1 = 0, T1 = T0 (onset temperature of the considered process)
and RI = 1, this relation turn into:

ln
ˇ

T − T0
= ln

A

g (˛)
− E

RT
(8)

Eq. (8) was derived by Kennedy and Clark [39] by integration of rate
Eq. (1) assuming T =const. and introducing in the obtained relation
ˇ = T – T0/t. As was recently noted by Ortega [40] the derivation of
Eq. (8) is conceptually erroneous because, in non-isothermal con-
dition, the change of variable t with T must be performed before
the integration of Eq. (1) considering T = const.

According to relation (7):

E = −R
d ln

(
ˇ/ (T2 − T1)

)
d
(

1/T2
) − R

d ln RI

d
(

1/T2
) ≡ EKC − R

d ln RI

d
(

1/T2
) (9)

where EKC = − R(d ln(ˇ/T2 − T1))/d(1/T2)) is the activation energy
corresponding to a procedure based on the relation:

ln
ˇ

T2 − T1
= ln

A

g(˛2) − g(˛1)
− E

RT2
(10)

This is similar with that derived by Kennedy and Clark [39].
In order to evaluate the activation energy using Eq. (9), the fol-

lowing iterative procedure is proposed:

I. For RI = const., by plotting ln(ˇ/(T2 − T1)) vs. 1/T2 activation
energy E(1) ≡EKC is obtained from the slope of this straight line.

II. E(1) being introduced in the expression of RI, the value of E(2) is
evaluated from the slope of the straight line (ln(ˇ/(T2 − T1)) − ln
RI) vs. 1/T2.

III. Let E(2) replace E(1) and repeat the step II until |(E(i+1) − E(i))| ≤ 0.1
kJ mol−1.

In comparison with integral isoconversional methods, like FWO
and KAS methods, the above suggested iterative procedure exhibits
the advantage of the possibility of using for temperature integral
one of the more precise approximations or the values of this integral
exactly numerically evaluated by Mathematica software system.
Another advantage is that this procedure can be applied for all
ranges of �˛, even small �˛ ranges.

Obviously, E = EKC for RI = const. = C. In order to put in evidence
the cases in which this condition is respected, we will consider that
for relative small range of T2 (in the experimental cases which will
be analyzed in Section 3: �T2 ≤ 50 K), the exact value of I(E, T2, T1)
is proportional with the following gross approximate expression
of the temperature integral suggested by Mianowscki and Radko
[41]:

I(E, T2, T1) ≈ C∗IMR(E, T2, T1) = C∗
{

T2

[
exp

(
− E

RT2

)]

− T1

[
exp

(
− E

RT1

)]}
(11)

As we will show in Section 3, C* value exhibits a relative standard
deviation around the average value lower than 4%.

Substituting the expression (11) in the relation of RI, the condi-
T2 (C∗ − C)
[

exp
(

− E

RT2

)]
+ T1

{
C

[
exp

(
− E

RT2

)]

− C∗
[

exp
(

− E

RT1

)]}
= 0 (12)
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Table 1
The values of the activation energy obtained by isoconversional methods for thermal degradation of PVC.

˛ EFR (kJ mol−1) EFWO (kJ mol−1) EKAS (kJ mol−1) ENL-INT (kJ mol−1) EIT (T1 = 0 K) (kJ mol−1) EIT (T1 = 400 K) (kJ mol−1) EIT (�˛ = 0.05) (kJ mol−1)

0.10 104.2 ± 2.0 105.1 ± 4.2 102.0 ± 4.4 102.0 102.2 ± 4.6 102.1 ± 4.6 107.5 ± 7.2
0.20 101.5 ± 2.2 104.9 ± 2.8 101.7 ± 3.0 101.7 102.7 ± 2.8 102.6 ± 2.8 103.2 ± 2.7
0.30 101.9 ± 3.2 105.6 ± 1.9 102.3 ± 2.0 102.3 102.5 ± 2.0 102.4 ± 2.0 107.9 ± 5.0
0.40 101.0 ± 3.9 104.9 ± 1.8 101.5 ± 1.9 101.5 102.4 ± 1.9 102.4 ± 1.9 101.6 ± 4.8
0.50 101.8 ± 4.5 105.3 ± 2.1 102.8 ± 2.3 102.8 102.2 ± 2.6 102.2 ± 2.6 103.9 ± 9.4
0.60 103.2 ± 5.7 105.4 ± 2.5 101.8 ± 2.6 101.8 102.3 ± 3.2 102.3 ± 3.2 101.1 ± 5.8
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0.70 105.2 ± 6.4 105.8 ± 3.2 102.2 ± 3.2 102.2

he indexes FR, FWO, KAS, NL-INT and IT refer to the isoconversional methods FR,
ntegral) and the suggested iterative method, respectively.

t follows that E = EKC for:

= C∗ and T1 = 0 (13)

onsequently, the relation:

n
ˇ

T˛
= ln

A

g (˛)
− E

RT˛
(14)

ould be used for evaluation of E from the slope of the straight
ine ln(ˇ/T˛) vs. (1/T˛) only if the conditions (13) are carried out.
he possibility of using this isoconversional method was previously
iscussed by Popescu and Segal [42].

As was above mentioned, the suggested iterative method can be
pplied for all ranges of �˛ = ˛2 − ˛1.

If E does not depend on ˛, it is expected that the activation
nergy evaluated by this method is independent on �˛ and is
losed to that obtained by all differential and integral isoconver-
ional methods. It is also expected that, for ˛1 = 0, the iterative
ethod leads to correct value of E for constant or random choice

f T1 values in the range 0 ≤ T1 ≤ T (min)
onset , where T (min)

onset is the onset
emperature corresponding to the minimum used heating rate.

When E depends on ˛, it is expected that for a very small value
f �˛ and a given ˛, E evaluated by iterative method to be close
o that obtained by differential isoconversional methods. On the
ther hand, in this case, for 0 ≤ T1 � T (min)

onset , the value of E for a given
, must be closed to that obtained by the integral isoconversional
ethods, like FWO, KAS and nonlinear integral methods.
Finally, we will discuss the applicability of the suggested iter-

tive method for the evaluation of the apparent activation energy
orresponding to non-isothermal crystallization from melts. Vya-
ovkin and Sbirrazzuoli [43,44] pointed out that the more popular
epresentatives multiple heating rate methods FWO [16,17] and
issinger [45] cannot be directly applied for such processes because

hese methods require taking the logarithm of ˇ that exhibits a
egative value. Therefore, for the processes occurring on cooling,
eliable values of E are obtained by differential isoconversional
ethod of Friedman [15] and/or the modified nonlinear method

f Vyazovkin [24] in which the integration of rate equation id per-
ormed for small �˛ range.

Eq. (7) that grounds the suggested iterative method permits sub-
titution of negative value of ˇ because during cooling T2 < T1 and
onsequently ˇ/(T2 − T1) and RI have positive values. In order to
pply this method, the numerically calculated values of the tem-
erature integral could be used. For E < 0 and |E/R| in the range
× 103–37 × 103 K, a very good agreement between the numeri-
ally calculated values of

∫ T2
T1

[
exp(−E/RT)

]
dT and those evaluated

sing Senum–Yang approximation was obtained. Consequently,
he Senum–Yang approximation of temperature integral can be
lso used in such cases. For a given T2, p(x2)/p(x1) increases with

1, and for high values of T1 at which ˛1 = 0: p(x2) − p(x1) ≈ p(x2).
onsequently, for such values of T1:

(˛2) ≡ g(˛) ≈ A

ˇ

E

R
p
(

E

RT2

)
(15)
102.4 ± 4.1 102.4 ± 4.1 105.2 ± 9.8

KAS, nonlinear integral method (Senum–Yang approximation for the temperature

Considering the simple approximations of the temperature integral
suggested by Doyle [27] and Coats and Redfern [28]:

ln p
(

E

RT2

)
= −5.331 − 1.052

E

RT2
(16)

and

p
(

E

RT2

)
= R2T2

2

E2
exp

(
− E

RT2

)
(17)

respectively, the following relations result:

ln(−ˇ) = ln
[
− AE

Rg (˛)

]
− 5.331 − 1.052

E

RT2
(18)

ln

(
− ˇ

T2
2

)
= ln

[
− AR

Eg (˛)

]
− E

RT2
(19)

Consequently, FWO and KAS integral isoconversional methods,
based on Eqs. (18) and (19), respectively, can be used for eval-
uation of activation energy corresponding to the crystallization
from melt. Obviously, if E depends on conversion degree, as was
observed for majority crystallization from melt (see for example
Refs. [43,44,46]), for a given ˛, the value of activation energy deter-
mined by these integral methods differs than that evaluated by a
differential isoconversional method.

3. Applications

The applicability of the suggested iterative isoconversional pro-
cedure for some ranges of �˛, ˛1 = 0 and some choices of T1 was
checked for the following cases: (a) the non-isothermal degra-
dation of polyvinyl chloride (PVC) that exhibits a large range of
˛ in which E = constant; (b) the non-isothermal decomposition of
ammonium perchlorate (AP) characterized by a strong dependence
of E on ˛; (c) crystallization of poly(ethylene terephthalate) (PET)
melt.

(a) Non-isothermal degradation of PVC
The TG curves recorded in air static atmosphere at 2, 3, 4, 5 and

10 K min−1, and corresponding to thermal degradation of a sort of
pure PVC with average molecular weight of 172,000 were reported
in a previous paper [47]. In a next work [3], we applied the isocon-
versional methods (FR, FWO, KAS, integral nonlinear method) and
obtained that for 0 < ˛ ≤ 0.70 the activation energy does not depend
on the conversion degree. In Table 1 there are given the values of E
obtained by these methods as well as those resulted using the sug-
gested iterative method for �˛ = 0.05; T1 = 0 K and T1 = 400 K (at all
considered heating rates, and ˛ = 0 for T1 < 460 K). One notes that,
for a given ˛2, only two iterations are necessary. The inspection of
this table shows that, in the limits of inherent experimental errors,

a good agreement among the E values determined by all consid-
ered isoconversional methods was obtained. However, the relative
higher values of E obtained by FWO method could be explained
by worst approximation for temperature integral on which this
method is based.
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Table 2
The values of activation energy obtained by random choice of T1 for non-isothermal
degradation of PVC.

˛ T1 for ˇ = 2; 3; 4; 5 and 10 K min−1 K Iteration E (kJ mol−1)

0.1 50; 400; 155; 95; 320 0 121.7 ± 67.9
1 102.2 ± 4.6
2 102.2 ± 4.6

0.2 376; 33; 139; 286; 87 0 26.8 ± 62.8
1 88.6 ± 7.1
2 101.8 ± 2.3
3 102.1 ± 2.5
4 102.1 ± 2.5

0.3 450; 10; 200; 350; 80 0 18.0 ± 73.3
1 72.4 ± 19.2
2 98.4 ± 1.7
3 100.7 ± 1.2
4 100.8 ± 1.3
5 100.8 ± 1.3

0.4 376; 33; 139; 286; 87 0 56.2 ± 44.9
1 102.4 ± 1.8
2 102.4 ± 1.9

0.5 391; 27; 169; 258; 92 0 49.7 ± 45.3
1 101.8 ± 2.7
2 102.3 ± 2.6
3 102.3 ± 2.6

0.6 23; 420; 123; 64; 317 0 119.8 ± 69.5
1 102.2 ± 3.2
2 102.3 ± 3.3
3 102.3 ± 3.3

0.7 341; 49; 154; 246; 46 0 61.0 ± 32.7
1 102.6 ± 4.1
2 102.4 ± 4.1
3 102.4 ± 4.1

Iteration 0 corresponds to RI = 1.
ig. 1. The dependencies of EKC , E and RI on T1, for non-isothermal degradation of
VC and ˛2 = 0.3.
a) (�) EKC vs. T1; O E vs. T1; (b) (�)RI vs. T1.

In the range 0 ≤ T1 ≤ T (min)
onset and a given ˛2, C* does not depend

n T1 (for ˛2 = 0.1: C∗ = 0.03702 ± 0.00080; for ˛2 = 0.3: C∗ =
.03966 ± 0.00088; for ˛2 = 0.6: C∗ = 0.04012 ± 0.00091), but C*

ncreases with ˛2.
Fig. 1 shows the dependencies of EKC, E and RI on T1 for ˛2 = 0.3;

imilar dependencies were obtained for each conversion degree
rom the range 0.05 ≤ ˛2 ≤ 0.70. The considered T1 values are lower
han T (min)

onset . The inspection of this figure shows that:

1) EKC decreases with T1, while E is practically independent on this
temperature.

2) The dependencies EKC vs. T1 and RI vs. T1 are correlated, namely
the increase of RI corresponds to the decrease of EKC.

3) RI = C = C* for T1 = 0 K.

The statements (1) and (2) put in evidence the importance of the
erm R(d ln RI/d(1/T2)) from Eq. (9), which grounds the suggested
terative method.

As it was noted above, it is expected that the iterative method
s also applicable for random choice of T1 from the range 0 ≤ T1 ≤
(min)
onset . Table 2 lists the results obtained for some conversion degrees
nd random choice of T1. As an example, in Fig. 2 is presented
he corresponding curves [ln(ˇ/(T0.3 − T1)) − lnRI] vs. (1/T0.3) for
2 = 0.3. For each ˛(=˛2), ln ˇ/(T2 − T1) vs. (1/T2) is not a straight line,
ut after two iterations the linearization of

[
ln(ˇ/(T2 − T1)) − ln RI

]
s. (1/T2) was obtained. The last necessary iteration leads to E values
lose to those listed in Table 1.
(b) Non-isothermal decomposition of AP
In this section, the suggested iterative procedure will be applied

o the experimental data distributed to the participants in the ICTAC
inetic Project [48] for the decomposition of AP at the heating rates
f 2.52, 5.16, 7.58, 10.49, 12.79, and 15.45 K min−1. The values of

Fig. 2. The dependencies ln(ˇ/(T2 − T1)) − ln RI vs. (1/T2) for non-isothermal degra-
dation of PVC and ˛2 = 0.3 (T1 = 450; 10; 200; 350 and 80 K for 2; 3; 4; 5 and
10 K min−1, respectively).
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ig. 3. Dependence on conversion degree of the apparent activation energy of AP
ecomposition evaluated by means of iterative method for T1 = 0 K and T1 = 483.15 K,
nd NL-INT method.

he activation energy determined by linear and nonlinear isocon-
ersional methods were reported by the participants at this Project
n the Refs.[2,49]. Subsequently [25], the kinetic analysis of these
on-isothermal data put in evidence the high differences between
values determined by differential and integral isoconversional
ethods. It was obtained [25] that the activation energy changes

trongly with the conversion degree, and the shape of Edif (E eval-
ated by a differential method) vs. ˛ curve is different than Eint (E
valuated by an integral method) vs. ˛ curve.

The results obtained by iterative, FR and FWO methods are com-
aratively presented in Figs. 3 and 4.

According to the results presented in Fig. 3, the E values deter-
ined by iterative method for T1 in the range 0 ≤ T1 ≤ T (min)

onset are
losed to those obtained by nonlinear integral isoconversional
ethod (NL-INT with Senum–Yang approximation for temperature
ntegral). This can be explained by the fact that, for a given ˛, E
valuated by both methods reflects the history of the system in the
ange 0–˛. Unlike the integral isoconversional methods, the differ-
ntial isoconversional methods and the methods which use small

ig. 4. Dependence on conversion degree of the apparent activation energy of
P decomposition evaluated by means of iterative method for �˛ = 0.01, and FR
ethod.
Fig. 5. Dependence on E – evaluated by iterative method vs. ˛1 for ˛2 = 0.4 (AP
decomposition).

ranges of �˛ leads to “punctual” values of activation energy, which
are in good agreement (see Fig. 4). Therefore, when E depends on ˛,
for a given ˛, Edif and Eint exhibit different values, as was obtained
for decomposition of AP (Figs. 3 and 4). On the other hand, it is
expected that in such cases, E evaluated by iterative method for a
given ˛(=˛2) to be dependent on ˛1. Such a dependence for ˛2 = 0.4
is illustrated in Fig. 5.

We also note that E (evaluated by iterative method for �˛ = 0.01)
vs. ˛ curve is not so smooth like EFR vs. ˛ curve (see Fig. 4). This
could be do to the accuracy of T evaluation for such small range of
the conversion degree.

The application of the iterative method for ˛1 = 0.05
and ˛2 = 0.25, and for ˛1 = 0.40 and ˛2 = 0.80 leads to
E = 84.2 ± 3.2 kJ mol−1 and E = 117.5 ± 5.3 kJ mol−1, respectively.
These values are in good agreement with those shown in Fig. 4.
Therefore, the use of the suggested iterative method could indicate
the range in which the kinetic of a complex process is deter-
mined by certain step characterized by activation parameters
independent on ˛.

Fig. 6 shows the dependencies of EKC, E and RI on T1 from
the range 0 ≤ T1 ≤ T (min)

onset for ˛2 = 0.2; similar dependencies were
obtained for each conversion degree. In the mentioned range of
T1, C* does not depend on T1, but depends on ˛2 (for ˛2 = 0.2:
C∗ = 0.04424 ± 0.00118; for ˛2 = 0.5: C∗ = 0.03988 ± 0.00106; for
˛2 = 0.75: C∗ = 0.04129 ± 0.00108). As it was expected, E deter-
mined by iterative method is in good agreement with that obtained
by NL-INT method. The remarks (1–3) performed for PVC degrada-
tion are also valid for kinetic analysis of AP decomposition.

Table 3 lists the results obtained for some conversion degrees
and random choice of T1. As an example, in Fig. 7 is presented
the corresponding curves [ln(ˇ/(T0.2 − T1)) − ln RI] vs. (1/T0.2) for

˛2 = 0.2. It was obtained once again that, for each ˛(=˛2),
ln ˇ/(T2 − T1) vs. (1/T2) is not a straight line, but after the first
iteration the linearization of [ln(ˇ/(T2 − T1)) − ln RI] vs. (1/T2) was
achieved.
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Fig. 6. The dependencies of EKC , E and RI on T1, for AP decomposition and ˛2 = 0.2.
(a) (�) EKC; O E; (b) (�)RI .

Table 3
The values of activation energy obtained by random choice of T1 for non-isothermal deco

˛ T1 for ˇ = 2.52; 5.16; 7.58; 10.49; 12.79 and 15.45 K min−1 K Itera

0.1 450.00; 50.00; 225.00; 345.00; 110.00; 87.00 0
1
2
3
4

0.2 473.15; 73.15; 373.15; 223.15; 273.15; 203.15 0
1
2
3
4

0.3 95.35; 150.50; 320.64; 70.00; 225.84; 482.00 0
1
2
3

0.4 252.00; 11.00; 125.70; 400.85; 60.15; 300.00 0
1
2

0.5 10.20; 415.25; 223.38; 333.10; 120.73; 93.55 0
1
2

0.6 60.61; 395.20; 275.00; 133.52; 254.77; 400.00 0
1
2
3

0.7 440.00; 25.07; 320.00; 215.63; 88.47; 155.00 0
1
2
3

0.8 260.00; 377.75; 115.42; 301.15; 55.00; 450.00 0
1
2

Iteration 0 corresponds to RI = 1.
a ENL-INT was evaluated using Senum–Yang approximation for the temperature integral
Fig. 7. The dependencies ln ˇ/(T2 − T1) − ln RI vs. (1/T2) for AP decomposition and
˛2 = 0.2 (T1 = 473.15; 73.15; 373.15; 223.15; 273.15 and 203.15 K for 2.52; 5.16; 7.58;
10.49; 12.79 and 15.45 K min−1, respectively).

(c) Crystallization of PET melt
The investigated PET with 0.7% TiO2 was produced by Hoechst-

Germany. The main characteristics of this material are density
1.418 g cm−3; melting point 255 ◦C; ˛ relaxation temperature eval-
uated by DSC measurement performed at of 10 K min−1: 85.1 ◦C

(for PET this is essentially the glass transition temperature); crys-
tallinity evaluated by DSC measurements: 32.8 ± 1.7%.

DSC 204 F1 Phoenix apparatus, produced by Netzsch-Germany,
was used to study the PET non-isothermal crystallization. Each DSC

mposition of AP.

tion E (kJ mol−1) EKAS (kJ mol−1) ENL-INT
a (kJ mol−)1

34.4 ± 40.0 106.5 ± 2.8 106.9
98.0 ± 2.2

106.4 ± 2.6
106.5 ± 2.7
106.5 ± 2.7

47.6 ± 41.7 98.7 ± 2.3 99.1
91.0 ± 2.7
97.4 ± 2.0
97.7 ± 2.1
97.1 ± 2.1

148.6 ± 32.3 93.8 ± 2.4 94.3
94.1 ± 2.4
94.4 ± 2.4
94.4 ± 2.4

127.2 ± 36.3 101.0 ± 3.0 101.6
101.6 ± 2.9
101.6 ± 2.9
110.7 ± 38.3 106.9 ± 3.9 108.0
108.0 ± 3.7
108.0 ± 3.7
143.1 ± 28.6 110.4 ± 4.1 110.8
110.7 ± 4.1
110.8 ± 4.1
110.8 ± 4.1

58.8 ± 30.2 111.8 ± 4.3 112.2
112.1 ± 4.3
112.2 ± 4.3
112.2 ± 4.3
123.1 ± 35.8 103.0 ± 4.5 113.5
113.4 ± 4.5
113.4 ± 4.5

.
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Fig. 9. ˛ as a function of temperature for crystallization of PET.
Fig. 8. Non-isothermal melt crystallization exotherms of PET.

nalysis was performed in Ar flow (purity 99.999%; 20 mL min−1), in
n aluminum pan. The experiment started with heating the sample
aving ≈11 mg, from room temperature to 280 ◦C, where it was
eld for 10 min to eliminate small residual crystals. Then, the melt
as cooled to crystallize at constant cooling rate (the experiments
ere performed at the following cooling rates: −2.0, −5.0, −10.0

nd −12.5 K min−1). It is noteworthy that each sample was used
nly once.

The crystallization exotherms of PET at the used four different
ooling rates are shown in Fig. 8. Clearly, the exothermic curve
ecomes wider and shifts to the lower temperature regime as the
bsolute value of cooling rate increases. These data were used for
valuation of the relative degree of crystallization as a function of
emperature by applying the formula:

(T) =
∫ T

Tonset
(dHc/dT)dT∫ T∞

Tonset
(dHc/dT)dT

(20)

here Tonset and T∝ are the crystallization onset and end tempera-
ure, Hc is the enthalpy of crystallization.

Fig. 9 shows ˛ = ˛(T) curves, evaluated considering the sig-
oidal baseline of curves from Fig. 8, which keeps into account

he change of heat capacity as a result of crystallization. These
ata were used for evaluation of E vs. ˛ curve by the following

soconversional methods: FR, iterative method for small values of
˛ (0.01 ≤ �˛ ≤ 0.05), iterative method for T1 > T (min)

onset , iterative
ethod based on Eq. (18) and iterative method based on Eq. (19).

he obtained results are shown in Fig. 10. Similar shape of E vs. ˛
urve was previously reported by Vyazovkin and Sbirrazzuoli [46].
he differences between our results and that obtained by these
uthors could be due to different sorts of PET.
Our results are restricted to ˛ ≤ 0.5 because for higher values of
onversion degree, E values evaluated by all mentioned methods
xhibit relative standard deviation higher than 10%, which could
e due to the complexity of the investigated process.

The inspection of this figure shows that:

Fig. 10. Dependence on conversion degree of the apparent activation energy of PET
crystallization evaluated by means of FR, iterative method and methods based on
Eqs. (18) and (19).
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ig. 11. The dependencies ln(ˇ/(T0.25 − T1)) − ln RI vs. (1/T0.25) for crystallization of
ET and ˛2 = 0.25 (T1 = 626; 700; 650 and 680 K for 2; 5; 10 and 12.5 K min−1, respec-
ively).

1) The apparent activation energy evaluated by all methods
increases with the conversion degree.

2) The values of E obtained by FR method and iterative method for
small values of �˛ are in a very good agreement.

3) For a given ˛, EFR ≈ Eit (small > �˛) > Eit (Eq. (18)) > Eit (Eq.
(19)) = Eit (T1 = 600 K).

These results confirm the previously ones [3,31,32,34,50]
ccording to which when E depends on ˛, some important dif-
erences exist between E values determined by differential and
ntegral isoconversional methods. As it was above mentioned, in
uch cases, the application of differential isoconversional methods
s well as the modified (advanced) nonlinear method suggested
y Vyazovkin [24] is recommended. The statement (2) shows that
his recommendation can be extended to iterative method for small

˛. The differences between E values obtained by iterative meth-
ds based on Eqs. (18) and (19) could be explained by the different
pproximations of the temperature integral.

For crystallization from melt, it is also expected that the itera-
ive method is applicable for random choice of T1 with condition

1 > T (min)
onset . A check of this is shown in Fig. 11. The correspond-

ng values of E for iterations 0; 1 and 2 are −92.8 ± 16.4 kJ mol−1;
125.8 ± 1.1 kJ mol−1and −126.2 ± 0.9 kJ mol−1, respectively. The

ast value of E is equal with that obtained by iterative method for
1 = 600 K and iterative method based on Eq. (19) (see Fig. 10).

. Conclusions

. Using the integration of the general reaction rate for a given
range of the conversion degree and constant heating/cooling
rates, a new iterative isoconversional procedure to evaluate the

activation energy from non-isothermal data recorded at several
heating/cooling rates was worked out.

. In comparison with often used linear integral isoconversional
methods (FWO, KAS), the suggested iterative method remove the
errors in activation energy evaluation due to the use of very sim-

[
[
[
[
[
[
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ple approximate expressions of the temperature integral, which
permit the determination of activation energy from the slope of
a straight line.

3. The suggested iterative method is wide applicable no matter how
little or how great the considered conversion range is, and is
capable of providing valid values of the activation energy even
if the latter strongly varies with the conversion degree.

4. In comparison with nonlinear isoconversional methods, which
also allow using high accurate expressions of the tem-
perature integral, the suggested iterative method is lower
time-consuming.

5. The suggested method was checked for non-isothermal degrada-
tion of PVC, which exhibits a constant value of activation energy
for a large range of conversion degree, for decomposition of AP,
which exhibits a strong dependence of activation energy on the
conversion degree, and crystallization of PET melt.

6. It was pointed out that the suggested iterative procedure could
be useful for finding the conversion degree range for a rate-
determining step.
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